

Welcome to tavolo’s documentation!

[image: _images/logo.png]

tavolo [https://github.com/eliorc/tavolo] aims to package together valuable modules and functionality written for TensorFlow [https://www.tensorflow.org/] high-level Keras API for ease of use.

You see, the deep learning world is moving fast, and new ideas keep on coming.

tavolo gathers implementations of these useful ideas from the community (by contribution, from Kaggle [https://www.kaggle.com] etc.)
and makes them accessible in a single PyPI hosted package that compliments the tf.keras [https://www.tensorflow.org/guide/keras] module.

Showcase

tavolo’s API is straightforward and adopting its modules is as easy as it gets.

In tavolo, you’ll find implementations for basic layers like PositionalEncoding to complex modules like the Transformer’s
MultiHeadedAttention. You’ll also find non-layer implementations that can ease development, like the LearningRateFinder.

For example, if we wanted to add head a Yang-style attention mechanism into our model and look for the optimal learning rate, it would look something like:

import tensorflow as tf
import tavolo as tvl

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_len),
 tvl.seq2vec.YangAttention(n_units=64), # <--- Add Yang style attention
 tf.keras.layers.Dense(n_hidden_units, activation='relu'),
 tf.keras.layers.Dense(1, activation='sigmoid')])

model.compile(optimizer=tf.keras.optimizers.SGD(), loss=tf.keras.losses.BinaryCrossentropy())

Run learning rate range test
lr_finder = tvl.learning.LearningRateFinder(model=model)

learning_rates, losses = lr_finder.scan(train_data, train_labels, min_lr=0.0001, max_lr=1.0, batch_size=128)

Plot the results to choose your learning rate

You are welcome continue to the Installation page, or explore the different modules available:

Modules

	Embeddings
	PositionalEncoding

	DynamicMetaEmbedding

	ContextualDynamicMetaEmbedding

	Learning
	CyclicLearningRateCallback

	LearningRateFinder

	Seq2seq
	MultiHeadedAttention

	Seq2vec
	YangAttention

Contributing

Want to contribute? Please read our Contributing.

Installation

tavolo is hosted on PyPI, and the source code is available on Github.

Note

Tavolo will not install tensorflow by itself, this is to prevent installations of CPU and GPU versions together.
It is the user’s responsibility to install the tensorflow library

Install from PyPI

To install it using pip, simply run inside your environment

pip install tavolo

Install from source code

If you prefer to install from source code, first clone the repository

git clone https://github.com/eliorc/tavolo.git

then navigate into the directory, and install

cd tavolo
python setup.py install

Contributing

First of all, thanks for considering contributing code to tavolo!

Before contributing please open an issue in the Github repository [https://github.com/eliorc/tavolo] explaining the module you wish to contribute.

Assuming the module is accepted, it will be tagged so in the issue opened so you can start implementing to avoid wasting contributor’s time for code that won’t be accepted.

tavolo is built to compliment the tf.keras [https://www.tensorflow.org/guide/keras] module, make sure your contributions are focused at it.

Once your suggested module is accepted, follow the guidelines in Code and Documentation and Testing, and once completed you can open a pull request to the dev branch.

Note

Do not create pull requests into the master branch. Pull requests should be made to the dev branch, from which changes will be merged into master
on releases.

Code and Documentation

tavolo is open source, viewing the source code of a module and understanding every step in its implementation should be easy and straightforward, so users can trust the module they wish to use.

To fulfill this requirement, follow these guidelines:

	Comments - Even if the code is clear, use comments to explain steps (step comment example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L82]).

	Variable verbosity - Use verbose variable names that imply the meaning of their content, e.g. use mask instead of m.

	Clear tensor shapes - When applying operations on tensors, include the shape of the result in a comment. (tensor shape example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L83]).

	Format - reStructuredText [https://www.sphinx-doc.org/en/stable/usage/restructuredtext/index.html] is the documentation format use, and specifically PEP 287 (PyCharm’s default) for class methods.
On class level docstring, make sure you always include the following sections:

	Arguments - For the __init__ arguments (Arguments section example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L9]).

	Examples - For examples (Examples section example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L29])

	References - For sources (articles etc.) for further reading (References section example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L41]).

If you are contributing a tf.keras.layers.Layer subclass, also include:

	Input Shape - Input shape accepted by the layer’s call method (Input Shape section example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L16]).

	Output Shape - Output shape accepted by the layer’s call method (Output Shape section example [https://gist.github.com/eliorc/7095070fb371a41eb3151d4cf73b25d2#file-layer_normalization-py-L23]).

Testing

Tavolo uses pytest [https://docs.pytest.org/en/latest/] and codecov [https://codecov.io/] for its testing. Make sure you write your tests to cover the full functionality of the contributed code.

The tests should be written as a separate file for each module and in the destination tests/<parent_module>/<module_name>_test.py.

For example for the module tvl.normalization.LayerNormalization, the tests should be written in tests/normalization/layer_normalization_test.py.

It is quite difficult to define in advance which tests are mandatory, but you can draw insipration from the existing modules.

In the specific case of tf.keras.layers.Layer implementation, always include:

	test_shapes() - Given accepted input shapes, make sure the output shape is as expected (test_shapes() example [https://gist.github.com/eliorc/6ac98485b0606045f2412a587165176a#file-layer_normalization_test-py-L6]).

	test_masking() - Make sure layer supports masking (test_masking() example [https://gist.github.com/eliorc/6ac98485b0606045f2412a587165176a#file-layer_normalization_test-py-L26]).

	test_serialization() - Make sure layer can be saved and loaded using get_config and from_config (test_serialization() example [https://gist.github.com/eliorc/6ac98485b0606045f2412a587165176a#file-layer_normalization_test-py-L57]).

If possible, also include test_logic() for evaluating expected output given known input (test_logic() example [https://gist.github.com/eliorc/6ac98485b0606045f2412a587165176a#file-layer_normalization_test-py-L44]).

When done, run tests locally to make sure everything works fine, to do so, make sure you have installed the test requirements from the requirements/test.py [https://github.com/eliorc/tavolo/blob/master/requirements/test.txt] file and run tests locally using the following command from the main directory

pytest --cov=tavolo tests/

Strive for 100% coverage, and if all is well, create a pull request (to the dev branch) and it will be added to the package in a following release.

Embeddings

Modules related to embeddings

Modules

	PositionalEncoding

	DynamicMetaEmbedding

	ContextualDynamicMetaEmbedding

PositionalEncoding

Create a positional encoding layer, usually added on top of an embedding layer.
Embeds information about the position of the elements using the formula

\[\begin{align}\begin{aligned}PE[pos,2i]=sin\left(\frac{pos}{normalize_factor^{\frac{2i}{embedding_dim}}}\right)\\PE[pos,2i+1]=cos\left(\frac{pos}{normalize_factor^{\frac{2i}{embedding_dim}}}\right)\end{aligned}\end{align} \]

The resulting embedding gets added (point-wise) to the input.

Arguments

	max_sequence_length (int): Maximum sequence length of input

	embedding_dim (int): Dimensionality of the of the input’s last dimension

	normalize_factor (float): Normalize factor

	name (str): Layer name

Input shape

(batch_size, time_steps, channels) where time_steps equals to the max_sequence_length and channels to embedding_dim

Output shape

Same shape as input.

Examples

import tensorflow as tf
import tavolo as tvl

model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 8, input_length=max_sequence_length),
 tvl.embeddings.PositionalEncoding(max_sequence_length=max_sequence_length,
 embedding_dim=8)]) # Add positional encoding

References

Attention Is All You Need [https://arxiv.org/abs/1706.03762]

DynamicMetaEmbedding

Applies learned attention to different sets of embeddings matrices per token, to mix separate token
representations into a joined one. Self attention is word-dependent, meaning each word’s representation in the output
is only dependent on the word’s original embeddings in the given matrices, and the attention vector.

Arguments

	embedding_matrices (List[np.ndarray]): List of embedding matrices

	output_dim (int): Dimension of the output embedding

	mask_zero (bool): Whether or not the input value 0 is a special “padding” value that should be masked out

	input_length (Optional[int]): Parameter to be passed into internal tf.keras.layers.Embedding matrices

	name (str): Layer name

Input shape

(batch_size, time_steps)

Output shape

(batch_size, time_steps, output_dim)

Examples

Create Dynamic Meta Embeddings using 2 separate embedding matrices. Notice it is the user’s responsibility to make sure
all the arguments needed in the embedding lookup are passed to the tf.keras.layers.Embedding constructors (like trainable=False).

import tensorflow as tf
import tavolo as tvl

w2v_embedding = np.array(...) # Pre-trained embedding matrix

glove_embedding = np.array(...) # Pre-trained embedding matrix

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32'),
 tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_embedding],
 input_length=MAX_SEQUENCE_LENGTH)]) # Use DME embeddings

Using the same example as above, it is possible to define the output’s channel size

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32'),
 tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_embedding],
 input_length=MAX_SEQUENCE_LENGTH,
 output_dim=200)])

References

Dynamic Meta-Embeddings for Improved Sentence Representations [https://arxiv.org/abs/1804.07983]

ContextualDynamicMetaEmbedding

Applies learned attention to different sets of embeddings matrices per token, to mix separate token
representations into a joined one. Self attention is context-dependent, meaning each word’s representation in the output
is only dependent on the sentence’s original embeddings in the given matrices, and the attention vector.
The context is generated by a BiLSTM.

Arguments

	embedding_matrices (List[np.ndarray]): List of embedding matrices

	output_dim (int): Dimension of the output embedding

	mask_zero (bool): Whether or not the input value 0 is a special “padding” value that should be masked out

	input_length (Optional[int]): Parameter to be passed into internal tf.keras.layers.Embedding matrices

	n_lstm_units (int): Number of units in each LSTM, (notated as m in the original article)

	name (str): Layer name

Input shape

(batch_size, time_steps)

Output shape

(batch_size, time_steps, output_dim)

Examples

Create Dynamic Meta Embeddings using 2 separate embedding matrices. Notice it is the user’s responsibility to make sure
all the arguments needed in the embedding lookup are passed to the tf.keras.layers.Embedding constructors (like trainable=False).

import tensorflow as tf
import tavolo as tvl

w2v_embedding = np.array(...) # Pre-trained embedding matrix

glove_embedding = np.array(...) # Pre-trained embedding matrix

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32'),
 tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_embedding],
 input_length=MAX_SEQUENCE_LENGTH)]) # Use CDME embeddings

Using the same example as above, it is possible to define the output’s channel size and number of units in each LSTM

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32'),
 tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_embedding],
 input_length=MAX_SEQUENCE_LENGTH,
 n_lstm_units=128, output_dim=200)])

References

Dynamic Meta-Embeddings for Improved Sentence Representations [https://arxiv.org/abs/1804.07983]

Learning

Modules for altering the learning process

Modules

	CyclicLearningRateCallback

	LearningRateFinder

CyclicLearningRateCallback

Apply cyclic learning rate. Supports the following scale schemes:

	triangular - Triangular cycle

	triangular2 - Triangular cycle that shrinks amplitude by half each cycle

	exp_range - Triangular cycle that shrinks amplitude by gamma ** <cycle iterations> each cycle

Arguments

	base_lr (float): Lower boundary of each cycle

	max_lr (float): Upper boundary of each cycle, may not be reached depending on the scaling function

	step_size (int): Number of batches per half-cycle (step)

	scale_scheme (str): One of {'triangular', 'triangular2', 'exp_range'}. If scale_fn is passed, this argument is ignored

	gamma (float): Constant used for the exp_range’s scale_fn, used as (gamma ** <cycle iterations>)

	scale_fn (callable): Custom scaling policy, accepts cycle index / iterations depending on the scale_mode and must return a value in the range [0, 1]. If passed, ignores scale_scheme

	scale_mode (str): Define whether scale_fn is evaluated on cycle index or cycle iterations

Examples

Apply a triangular cyclic learning rate (default), with a step size of 2000 batches

import tensorflow as tf
import tavolo as tvl

clr = tvl.learning.CyclicLearningRateCallback(base_lr=0.001, max_lr=0.006, step_size=2000)

model.fit(X_train, Y_train, callbacks=[clr])

Apply a cyclic learning rate that shrinks amplitude by half each cycle

import tensorflow as tf
import tavolo as tvl

clr = tvl.learning.CyclicLearningRateCallback(base_lr=0.001, max_lr=0.006, step_size=2000, scale_scheme='triangular2')

model.fit(X_train, Y_train, callbacks=[clr])

Apply a cyclic learning rate with a custom scaling function

import tensorflow as tf
import tavolo as tvl

scale_fn = lambda x: 0.5 * (1 + np.sin(x * np.pi / 2))
clr = tvl.learning.CyclicLearningRateCallback(base_lr=0.001, max_lr=0.006, step_size=2000, scale_fn=scale_fn)

model.fit(X_train, Y_train, callbacks=[clr])

References

	Cyclical Learning Rates for Training Neural Networks [https://arxiv.org/abs/1506.01186]

	Original implementation [https://github.com/bckenstler/CLR]

LearningRateFinder

Learning rate finding utility for conducting the “LR range test”, see article reference for more information

Use the scan method for finding the loss values for learning rates in the given range

Arguments

	model (tf.keras.Model): Model for conduct test for. Must call model.compile before using this utility

Examples

Run a learning rate range test in the domain [0.0001, 1.0]

import tensorflow as tf
import tavolo as tvl

train_data = ...
train_labels = ...

Build model
model = tf.keras.Sequential([tf.keras.layers.Input(shape=(784,)),
 tf.keras.layers.Dense(128, activation=tf.nn.relu),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)])

Must call compile with optimizer before test
model.compile(optimizer=tf.keras.optimizers.SGD(), loss=tf.keras.losses.CategoricalCrossentropy())

Run learning rate range test
lr_finder = tvl.learning.LearningRateFinder(model=model)

learning_rates, losses = lr_finder.scan(train_data, train_labels, min_lr=0.0001, max_lr=1.0, batch_size=128)

Plot the results to choose your learning rate

References

	Cyclical Learning Rates for Training Neural Networks [https://arxiv.org/abs/1506.01186]

	
learning.LearningRateFinder.scan(x, y, min_lr: float = 0.0001, max_lr: float = 1.0, batch_size: Optional[int] = None, steps: int = 100) → Tuple[List[float], List[float]]

	Scans the learning rate range [min_lr, max_lr] for loss values

	Parameters

	
	x – Input data. It could be:
- A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs)
- A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs)
- A dict mapping input names to the corresponding array/tensors, if the model has named inputs
- A tf.data dataset or a dataset iterator. Should return a tuple of either (inputs, targets) or
(inputs, targets, sample_weights)
- A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample weights)

	y – Target data. Like the input data x,
it could be either Numpy array(s) or TensorFlow tensor(s).
It should be consistent with x (you cannot have Numpy inputs and
tensor targets, or inversely). If x is a dataset, dataset
iterator, generator, or tf.keras.utils.Sequence instance, y should
not be specified (since targets will be obtained from x).

	min_lr – Minimum learning rate

	max_lr – Maximum learning rate

	batch_size – Number of samples per gradient update.
Do not specify the batch_size if your data is in the
form of symbolic tensors, dataset, dataset iterators,
generators, or tf.keras.utils.Sequence instances (since they generate batches)

	steps – Number of steps to scan between min_lr and max_lr

	Returns

	Learning rates, losses documented

Seq2seq

Layers mapping sequences to sequences

Modules

	MultiHeadedAttention

MultiHeadedAttention

Applies (multi headed) attention, as in the Transformer

Arguments

	n_heads (int): Number of attention heads

	n_units (int): Number of units per head, defaults to the last dimension of the input

	causal (bool): Use causality (make each time point in output dependent only on previous time points of input)

	name (str): Layer name

call Arguments

	inputs (List[tf.Tensor]): List of the following tensors

	query: Query Tensor of shape [batch_size, Tq, dim]

	value: Value Tensor of shape [batch_size, Tv, dim].

	
	key: Optional key Tensor of shape [batch_size, Tv, dim].
	If not given, will use value for both key and value, which is the most common case

	mask (List[tf.Tensor]): List of the following tensors

	
	query_mask: A boolean mask Tensor of shape [batch_size, Tq].
	If given, the output will be zero at the positions where mask==False

	
	value_mask: A boolean mask Tensor of shape [batch_size, Tv].
	If given, will apply the mask such that values at positions where mask==False do not
contribute to the result

Input shape

(batch_size, time_steps, channels)

Output shape

Same shape as input.

Examples

Apply a 4 headed (default) self attention

import tensorflow as tf
import tavolo as tvl

Inputs
inputs = tf.keras.Input(shape=(max_seq_length,), dtype='int32')

Embedding lookup
embedding_layer = tf.keras.layers.Embedding(max_tokens, dimension)
embedded = embedding_layer(inputs)

Apply multi headed self attention
mh_attention = tvl.seq2seq.MultiHeadedAttention()
attended = mh_attention([embedded, embedded])

Apply a 4 headed attention, using a query vector and masking

import tensorflow as tf
import tavolo as tvl

Inputs
query_input = tf.keras.Input(shape=(max_seq_length,), dtype='int32')
value_input = tf.keras.Input(shape=(max_seq_length,), dtype='int32')

Embedding lookup
embedding_layer = tf.keras.layers.Embedding(max_tokens, dimension, mask_zero=True)
embedded_query = embedding_layer(query_input)
embedded_value = embedding_layer(value_input)

Masks
query_mask = embedding_layer.compute_mask(query_input)
value_mask = embedding_layer.compute_mask(value_input)

Apply multi headed self attention
mh_attention = tvl.seq2seq.MultiHeadedAttention()
attended = mh_attention([embedded_query, embedded_value], mask=[query_mask, value_mask])

Note

Since the query and value should be passed separately, it is recommended to use the functional API [https://www.tensorflow.org/guide/keras/functional] or
model subclassing [https://www.tensorflow.org/guide/keras/custom_layers_and_models#building_models] to use this layer.

References

Attention Is All You Need [https://arxiv.org/abs/1706.03762]

Seq2vec

Layers mapping sequences to vectors

Modules

	YangAttention

YangAttention

Reduce time dimension by applying attention using learned variables

Arguments

	n_units (int): Attention’s variables units

	name (str): Layer name

Input shape

(batch_size, time_steps, channels)

Output shape

(batch_size, channels)

Examples

import tensorflow as tf
import tavolo as tvl

model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 8, input_length=max_sequence_length),
 tvl.seq2vec.YangAttention()])

References

Hierarchical Attention Networks for Document Classification [https://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf]

 Python Module Index

 e |
 l |
 s

 		 	

 		
 e	

 	[image: -]
 	
 embeddings	

 	
 	
 embeddings.ContextualDynamicMetaEmbedding	

 	
 	
 embeddings.DynamicMetaEmbedding	

 	
 	
 embeddings.PositionalEncoding	

 		 	

 		
 l	

 	[image: -]
 	
 learning	

 	
 	
 learning.CyclicLearningRateCallback	

 	
 	
 learning.LearningRateFinder	

 		 	

 		
 s	

 	[image: -]
 	
 seq2seq	

 	
 	
 seq2seq.MultiHeadedAttention	

 	[image: -]
 	
 seq2vec	

 	
 	
 seq2vec.YangAttention	

Index

 E
 | L
 | M
 | S

E

 	
 	
 embeddings.ContextualDynamicMetaEmbedding

 	module

 	
 embeddings.DynamicMetaEmbedding

 	module

 	
 	
 embeddings.PositionalEncoding

 	module

L

 	
 	
 learning.CyclicLearningRateCallback

 	module

 	
 	
 learning.LearningRateFinder

 	module

M

 	
 	
 module

 	embeddings.ContextualDynamicMetaEmbedding

 	embeddings.DynamicMetaEmbedding

 	embeddings.PositionalEncoding

 	learning.CyclicLearningRateCallback

 	learning.LearningRateFinder

 	seq2seq.MultiHeadedAttention

 	seq2vec.YangAttention

S

 	
 	scan() (in module learning.LearningRateFinder)

 	
 seq2seq.MultiHeadedAttention

 	module

 	
 	
 seq2vec.YangAttention

 	module

 nav.xhtml

 Table of Contents

 		
 Welcome to tavolo’s documentation!

 		
 Embeddings

 		
 PositionalEncoding

 		
 Arguments

 		
 Input shape

 		
 Output shape

 		
 Examples

 		
 References

 		
 DynamicMetaEmbedding

 		
 Arguments

 		
 Input shape

 		
 Output shape

 		
 Examples

 		
 References

 		
 ContextualDynamicMetaEmbedding

 		
 Arguments

 		
 Input shape

 		
 Output shape

 		
 Examples

 		
 References

 		
 Learning

 		
 CyclicLearningRateCallback

 		
 Arguments

 		
 Examples

 		
 References

 		
 LearningRateFinder

 		
 Arguments

 		
 Examples

 		
 References

 		
 Seq2seq

 		
 MultiHeadedAttention

 		
 Arguments

 		
 call Arguments

 		
 Input shape

 		
 Output shape

 		
 Examples

 		
 References

 		
 Seq2vec

 		
 YangAttention

 		
 Arguments

 		
 Input shape

 		
 Output shape

 		
 Examples

 		
 References

_static/file.png

_static/logo.png

_static/minus.png

_static/plus.png

_images/logo.png

