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tavolo, Release 0.8.0

tavolo aims to package together valuable modules and functionality written for TensorFlow high-level Keras API for
ease of use.
You see, the deep learning world is moving fast, and new ideas keep on coming.
tavolo gathers implementations of these useful ideas from the community (by contribution, from Kaggle etc.) and
makes them accessible in a single PyPI hosted package that compliments the tf.keras module.
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CHAPTER

ONE

SHOWCASE

tavolo’s API is straightforward and adopting its modules is as easy as it gets.
In tavolo, you’ll find implementations for layers like PositionalEncoding and non-layer implementations that can ease
development, like the LearningRateFinder.
For example, if we wanted to add head a Yang-style attention mechanism into our model and look for the optimal
learning rate, it would look something like:

import tensorflow as tf
import tavolo as tvl

model = tf.keras.Sequential([
tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=embedding_size, input_

→˓length=max_len),
tvl.seq2vec.YangAttention(n_units=64), # <--- Add Yang style attention
tf.keras.layers.Dense(n_hidden_units, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')])

model.compile(optimizer=tf.keras.optimizers.SGD(), loss=tf.keras.losses.
→˓BinaryCrossentropy())

# Run learning rate range test
lr_finder = tvl.learning.LearningRateFinder(model=model)

learning_rates, losses = lr_finder.scan(train_data, train_labels, min_lr=0.0001, max_
→˓lr=1.0, batch_size=128)

### Plot the results to choose your learning rate

You are welcome continue to the Installation page, or explore the different modules available:
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1.1 Installation

tavolo is hosted on PyPI, and the source code is available on Github.

Note: Tavolo will not install tensorflow by itself, this is to prevent installations of CPU and GPU versions together. It
is the user’s responsibility to install the tensorflow library

1.1.1 Install from PyPI

To install it using pip, simply run inside your environment

pip install tavolo

1.1.2 Install from source code

If you prefer to install from source code, first clone the repository

git clone https://github.com/eliorc/tavolo.git

then navigate into the directory, and install

cd tavolo
python setup.py install

1.2 Contributing

First of all, thanks for considering contributing code to tavolo!
Before contributing please open an issue in the Github repository explaining the module you wish to contribute.
Assuming the module is accepted, it will be tagged so in the issue opened so you can start implementing to avoid
wasting contributor’s time for code that won’t be accepted.
tavolo is built to compliment the tf.keras module, make sure your contributions are focused at it.
Once your suggested module is accepted, follow the guidelines in Code and Documentation and Testing, and once
completed you can open a pull request to the dev branch.

Note: Do not create pull requests into the master branch. Pull requests should be made to the dev branch, from
which changes will be merged into master on releases.
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1.2.1 Code and Documentation

tavolo is open source, viewing the source code of a module and understanding every step in its implementation should
be easy and straightforward, so users can trust the module they wish to use.
To fulfill this requirement, follow these guidelines:

1. Comments - Even if the code is clear, use comments to explain steps (step comment example).

2. Variable verbosity - Use verbose variable names that imply the meaning of their content, e.g. use
mask instead of m.

3. Clear tensor shapes - When applying operations on tensors, include the shape of the result in a com-
ment. (tensor shape example).

4. Format - reStructuredText is the documentation format use, and specifically PEP 287 (PyCharm’s
default) for class methods. On class level docstring, make sure you always include the following
sections:

• Arguments - For the __init__ arguments (Arguments section example).

• Examples - For examples (Examples section example)

• References - For sources (articles etc.) for further reading (References section example).

If you are contributing a tf.keras.layers.Layer subclass, also include:

• Input Shape - Input shape accepted by the layer’s call method (Input Shape section ex-
ample).

• Output Shape - Output shape accepted by the layer’s call method (Output Shape section
example).

1.2.2 Testing

Tavolo uses pytest and codecov for its testing. Make sure you write your tests to cover the full functionality of the
contributed code.
The tests should be written as a separate file for each module and in the destination
tests/<parent_module>/<module_name>_test.py.
For example for the module tvl.normalization.LayerNormalization, the tests should be written in
tests/normalization/layer_normalization_test.py.
It is quite difficult to define in advance which tests are mandatory, but you can draw insipration from the existing
modules.
In the specific case of tf.keras.layers.Layer implementation, always include:

1. test_shapes() - Given accepted input shapes, make sure the output shape is as expected (test_shapes() exam-
ple).

2. test_masking() - Make sure layer supports masking (test_masking() example).

3. test_serialization() - Make sure layer can be saved and loaded using get_config and from_config
(test_serialization() example).

If possible, also include test_logic() for evaluating expected output given known input (test_logic() example).
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When done, run tests locally to make sure everything works fine, to do so, make sure you have installed the test
requirements from the requirements/test.py file and run tests locally using the following command from the main
directory

pytest --cov=tavolo tests/

Strive for 100% coverage, and if all is well, create a pull request (to the dev branch) and it will be added to the
package in a following release.

1.3 Embeddings

Modules related to embeddings

Modules

• PositionalEncoding

• DynamicMetaEmbedding

• ContextualDynamicMetaEmbedding

1.3.1 PositionalEncoding

Positional encoding layer, usually added on top of an embedding layer. Embeds information about the position of the
elements using the formula.

𝑃𝐸[𝑝𝑜𝑠, 2𝑖] = 𝑠𝑖𝑛

(︃
𝑝𝑜𝑠

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
2𝑖

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑑𝑖𝑚

)︃

𝑃𝐸[𝑝𝑜𝑠, 2𝑖+ 1] = 𝑐𝑜𝑠

(︃
𝑝𝑜𝑠

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
2𝑖

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑑𝑖𝑚

)︃

The resulting embedding gets added (point-wise) to the input.

Arguments

• max_sequence_length (int): Maximum sequence length of input

• embedding_dim (int): Dimensionality of the input’s last dimension

• normalize_factor (float): Normalize factor

• name (str): Layer name

6 Chapter 1. Showcase
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Input shape

(batch_size, time_steps, channels) where time_steps equals to the max_sequence_length and channels to
embedding_dim

Output shape

Same shape as input.

Examples

import tensorflow as tf
import tavolo as tvl

model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 8, input_length=max_
→˓sequence_length),

tvl.embeddings.PositionalEncoding(max_sequence_length=max_
→˓sequence_length,

embedding_dim=8)]) # Add␣
→˓positional encoding

References

Attention Is All You Need

1.3.2 DynamicMetaEmbedding

3

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,),
dtype=’int32’),

tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_embedding],
input_length=MAX_SEQUENCE_LENGTH)])

Using the same example as above, it is possible to define the output’s channel size

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,),␣
→˓dtype='int32'),

tvl.embeddings.DynamicMetaEmbedding([w2v_embedding,␣
→˓glove_embedding],

input_length=MAX_
→˓SEQUENCE_LENGTH,

output_dim=200)])

Dynamic Meta-Embeddings for Improved Sentence Representations

1.3. Embeddings 7
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1.3.3 ContextualDynamicMetaEmbedding

Applies learned attention to different sets of embeddings matrices per token, to mix separate token representations into
a joined one. Self attention is context-dependent, meaning each word’s representation in the output is only dependent
on the sentence’s original embeddings in the given matrices, and the attention vector. The context is generated by a
BiLSTM.

Arguments

• embedding_matrices (List[np.ndarray]): List of embedding matrices

• output_dim (int): Dimension of the output embedding

• mask_zero (bool): Whether the input value 0 is a special “padding” value that should be masked out

• input_length (Optional[int]): Parameter to be passed into internal tf.keras.layers.Embedding matrices

• n_lstm_units (int): Number of units in each LSTM, (notated as m in the original article)

• name (str): Layer name

Input shape

(batch_size, time_steps)

Output shape

(batch_size, time_steps, output_dim)

Examples

Create Dynamic Meta Embeddings using 2 separate embedding matrices. Notice it is the user’s responsibility to make
sure all the arguments needed in the embedding lookup are passed to the tf.keras.layers.Embedding constructors
(like trainable=False).

import tensorflow as tf
import tavolo as tvl

w2v_embedding = np.array(...) # Pre-trained embedding matrix

glove_embedding = np.array(...) # Pre-trained embedding matrix

model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,), dtype=
→˓'int32'),

tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_
→˓embedding],

input_length=MAX_
→˓SEQUENCE_LENGTH)])

Using the same example as above, it is possible to define the output’s channel size and number of units in each LSTM
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model = tf.keras.Sequential([tf.keras.layers.Input(shape=(MAX_SEQUENCE_LENGTH,), dtype=
→˓'int32'),

tvl.embeddings.DynamicMetaEmbedding([w2v_embedding, glove_
→˓embedding],

input_length=MAX_
→˓SEQUENCE_LENGTH,

n_lstm_units=128,␣
→˓output_dim=200)])

References

Dynamic Meta-Embeddings for Improved Sentence Representations

1.4 Learning

Modules for altering the learning process

Modules

• CyclicLearningRateCallback

• DataMapCallback

• LearningRateFinder

1.4.1 CyclicLearningRateCallback

Apply cyclic learning rate. Supports the following scale schemes:

• triangular - Triangular cycle

• triangular2 - Triangular cycle that shrinks amplitude by half each cycle

• exp_range - Triangular cycle that shrinks amplitude by gamma ** <cycle iterations> each cycle

Arguments

• base_lr (float): Lower boundary of each cycle

• max_lr (float): Upper boundary of each cycle, may not be reached depending on the scaling function

• step_size (int): Number of batches per half-cycle (step)

• scale_scheme (str): One of {'triangular', 'triangular2', 'exp_range'}. If scale_fn is passed,
this argument is ignored

• gamma (float): Constant used for the exp_range’s scale_fn, used as (gamma ** <cycle iterations>)

• scale_fn (callable): Custom scaling policy, accepts cycle index / iterations depending on the
scale_mode

and must return a value in the range [0, 1]. If passed, ignores scale_scheme

1.4. Learning 9
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• scale_mode (str): Define whether scale_fn is evaluated on cycle index or cycle iterations

Examples

Apply a triangular cyclic learning rate (default), with a step size of 2000 batches

import tensorflow as tf
import tavolo as tvl

clr = tvl.learning.CyclicLearningRateCallback(base_lr=0.001, max_lr=0.006, step_
→˓size=2000)

model.fit(X_train, Y_train, callbacks=[clr])

Apply a cyclic learning rate that shrinks amplitude by half each cycle

import tensorflow as tf
import tavolo as tvl

clr = tvl.learning.CyclicLearningRateCallback(base_lr=0.001, max_lr=0.006, step_
→˓size=2000,

scale_scheme='triangular2')

model.fit(X_train, Y_train, callbacks=[clr])

Apply a cyclic learning rate with a custom scaling function

import tensorflow as tf
import tavolo as tvl

scale_fn = lambda x: 0.5 * (1 + np.sin(x * np.pi / 2))
clr = tvl.learning.CyclicLearningRateCallback(base_lr=0.001, max_lr=0.006, step_
→˓size=2000, scale_fn=scale_fn)

model.fit(X_train, Y_train, callbacks=[clr])

References

• Cyclical Learning Rates for Training Neural Networks

• Original implementation
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1.4.2 DataMapCallback

Gather training dynamics for data map generation. Assumes a binary or multi-class model, no support for multi label.

Arguments

• dataset (tf.data.: Dataset): Usually, as the paper suggests, this is the training dataset. It should be:

1. Non-shuffled, so each iteration over the dataset should yield samples in the same order

2. Already batched, the .batch(n) method should already be applied on this dataset

3. Should yield batches of (features, labels), sample weights are not supported

• outputs_to_probabilities (Optional[Callable[[Any], tf.Tensor]]): Callable to convert model’s output
to probabilities. Use this if the model outputs logits, dictionary or any other form which is not a tensor of
probabilities. Defaults to None.

• sparse_labels (bool): Set to True if the labels are given as integers (not one hot encoded). Defaults to False.

Attributes

• gold_labels_probabilities (np.ndarray): Gold label predicted probabilities. With the shape of (n_samples,
n_epochs) and (i, j) is the probability of the gold label for sample i at epoch j.

• confidence (np.ndarray): Mean of true label probability across epochs.

• variability (np.ndarray): Standard deviation of true label probability across epochs.

• correctness (np.ndarray): Fraction of times correctly predicted across epochs

Examples

Calculate training dynamics during training

import tensorflow as tf
import tavolo as tvl

# Load dataset
train = ... # Instance of dataset
train_unshuffled = ... # Instance of dataset, unshuffled so that each iteration over the␣
→˓dataset would yield

# samples in the same order

# Prepare
train = train.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
train = train_unshuffled.batch(BATCH_SIZE * 10) # No gradient updates in data map, can␣
→˓use bigger batches

# Create the datamap callback
datamap = tvl.learning.DatMaCallback(dataset=train_unshuffled)

# Train
model.fit(train, epochs=N_EPOCHS, callbacks=[datamap])

(continues on next page)

1.4. Learning 11
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(continued from previous page)

# Get training dynamics
confidence, variability, correctness = datamap.confidence, datamap.variability, datamap.
→˓correctness

Calculate training dynamics from a model that outputs logits (and NOT probabilities)

import tensorflow as tf
import tavolo as tvl

# Create the datamap callback - using the outputs_to_predictions option
datamap = tvl.learning.DatMaCallback(dataset=train_unshuffled, outputs_to_
→˓probabilities=tf.nn.softmax)

# Train
model.fit(train, epochs=N_EPOCHS, callbacks=[datamap])

References

• Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

1.4.3 LearningRateFinder

Learning rate finding utility for conducting the “LR range test”, see article reference for more information

Use the scan method for finding the loss values for learning rates in the given range

Arguments

• model (tf.keras.Model): Model for conduct test for. Must call model.compile before using this utility

Examples

Run a learning rate range test in the domain [0.0001, 1.0]

import tensorflow as tf
import tavolo as tvl

train_data = ...
train_labels = ...

# Build model
model = tf.keras.Sequential([tf.keras.layers.Input(shape=(784,)),

tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)])

# Must call compile with optimizer before test
model.compile(optimizer=tf.keras.optimizers.SGD(), loss=tf.keras.losses.
→˓CategoricalCrossentropy())

(continues on next page)
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(continued from previous page)

# Run learning rate range test
lr_finder = tvl.learning.LearningRateFinder(model=model)

learning_rates, losses = lr_finder.scan(train_data, train_labels, min_lr=0.0001, max_
→˓lr=1.0, batch_size=128)

### Plot the results to choose your learning rate

References

• Cyclical Learning Rates for Training Neural Networks

learning.LearningRateFinder.scan(x, y, min_lr: float = 0.0001, max_lr: float = 1.0, batch_size:
Optional[int] = None, steps: int = 100)→ Tuple[List[float], List[float]]

Scans the learning rate range [min_lr, max_lr] for loss values

Parameters

• x – Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the
model has multiple inputs) - A TensorFlow tensor, or a list of tensors (in case the model
has multiple inputs) - A dict mapping input names to the corresponding array/tensors, if the
model has named inputs - A tf.data dataset or a dataset iterator. Should return a tuple of
either (inputs, targets) or

(inputs, targets, sample_weights)

– A generator or keras.utils.Sequence returning (inputs, targets) or (inputs,
targets, sample weights)

• y – Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow
tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets,
or inversely). If x is a dataset, dataset iterator, generator, or tf.keras.utils.Sequence
instance, y should not be specified (since targets will be obtained from x).

• min_lr – Minimum learning rate

• max_lr – Maximum learning rate

• batch_size – Number of samples per gradient update. Do not specify the batch_size
if your data is in the form of symbolic tensors, dataset, dataset iterators, generators, or tf.
keras.utils.Sequence instances (since they generate batches)

• steps – Number of steps to scan between min_lr and max_lr

Returns
Learning rates, losses documented

1.4. Learning 13
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1.5 Seq2vec

Layers mapping sequences to vectors

Modules

• YangAttention

1.5.1 YangAttention

Reduce time dimension by applying attention using learned variables

Arguments

• n_units (int): Attention’s variables units

• name (str): Layer name

Input shape

(batch_size, time_steps, channels)

Output shape

(batch_size, channels)

Examples

import tensorflow as tf
import tavolo as tvl

model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 8, input_length=max_
→˓sequence_length),

tvl.seq2vec.YangAttention()])

References

Hierarchical Attention Networks for Document Classification
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TWO

CONTRIBUTING

Want to contribute? Please read our Contributing.
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